Exercise, GLUT4, and skeletal muscle glucose uptake.
نویسندگان
چکیده
Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.
منابع مشابه
Exercise Causes Muscle GLUT4 Translocation in an Insulin-Independent Manner
Glucose uptake in skeletal muscle is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. The most important stimulators of glucose transport in skeletal muscle are insulin and exercise. Glucose uptake in skeletal muscle during exercise induces acceleration of many processes compared to the resting state. The scientific literature does not underline the role play...
متن کاملInvestigation of the RBP4 and GLUT4 gene expression in skeletal muscle of STZ induced diabetic rats following aerobic exercise training
Background: Type2 diabetes is a metabolic disease that is rapidly increasing in the world. GLUT4 and RBP4 are factors that play a role in glucose uptake. This study aimed to investigate the effect of moderate-intensity continuous training on RBP4 and GLUT4 gene expression of soleus muscle in STZ induced diabetic rats. Methods: This experimental study was conducted between May and September 201...
متن کاملIncreased Skeletal Muscle GLUT4 Expression in Obese Mice After Voluntary Wheel Running Exercise Is Posttranscriptional
Exercise promotes glucose clearance by increasing skeletal muscle GLUT4-mediated glucose uptake. Importantly, exercise upregulates muscle GLUT4 expression in an insulin-independent manner under conditions of insulin resistance, such as with type 2 diabetes. However, the insulin-independent mechanism responsible for rescued muscle GLUT4 expression is poorly understood. We used voluntary wheel ru...
متن کاملVisualization and quantitation of GLUT4 translocation in human skeletal muscle following glucose ingestion and exercise
Insulin- and contraction-stimulated increases in glucose uptake into skeletal muscle occur in part as a result of the translocation of glucose transporter 4 (GLUT4) from intracellular stores to the plasma membrane (PM). This study aimed to use immunofluorescence microscopy in human skeletal muscle to quantify GLUT4 redistribution from intracellular stores to the PM in response to glucose feedin...
متن کاملExercise ameliorates insulin resistance via Ca2+ signals distinct from those of insulin for GLUT4 translocation in skeletal muscles.
Muscle contraction and insulin induce glucose uptake in skeletal muscle through GLUT4 membrane translocation. Beneficial effects of exercise on glucose homeostasis in insulin-resistant individuals are known to be due to their distinct mechanism between contraction and insulin action on glucose uptake in skeletal muscle. However, the underlying mechanisms are not clear. Here we show that in skel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological reviews
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2013